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Abstract—Memetic Algorithms (MAs) are a class of stochastic
global search heuristics in which Evolutionary Algorithms (EAs)
- based approaches are combined usually with heuristic local
searches. This hybridization is meant to reach solutions that
would otherwise be unreachable by evolution or a local method
alone. In this work, we propose three Local Search (LS) algo-
rithms for hybridization with an existing Evolutionary Algorithm
with Pareto ranking in order to define biological intelligence
using the concepts of useful and utility and therefore to zoom
on the basin of attraction of promising realistic solutions. Our
experimental results with these memetic algorithms in the game
of Checkers show how we can learn the organization of behaviors
into paths of behaviors of different lengths and frequencies and
then reveal the true nature of these behaviors.

Index Terms—memetic algorithms, evolutionary algorithms,
local search algorithms, mechanical and biological intelligence

I. INTRODUCTION

Behaviors are exceptionally complex traits. Their sensitiv-
ity to environmental variation poses daunting challenges for
unraveling their underlying nature. In this work, we propose a
new approach for understanding complex behaviors: first, we
consider information as the fabric or the creator of everything
that exists in the world; then, using memetic algorithms [1],
[12] we explain the formation of organized components (called
paths of behaviors) as a result of useful work; finally, we show
that utility can be used to discover the true nature of behaviors.

Our design of memetic algorithms combines traditional
components initially proposed by ICE agent model [11] (i.e.,
motion and reflection operators, biological properties, Evolu-
tionary Algorithm (EA)) with Local Search (LS) components
that use information in relation with reality. All these com-
ponents hold the concepts of “motivation”, “development”,
“adaptation” and “experience”, emphasizing both mechanical
and biological intelligence. Concretely, in ICE model, me-
chanical intelligence takes inspiration from classical physics
[14] and is implemented using operators for agent motion (>)
and reflection (>>) to best future opportunities and parameters
to control or limit the agent motion. These operators dictate
how information is accessed and processed, therefore explain

how reality emerges from a multitude of opportunities. In
ICE model, biological intelligence is implemented using the
concepts of (1) embodiment - individuals have properties such
as Universality and Embodiment properties, (2) evolution -
evolution represents a high level manifestation of individuals
derived from the following rule of life: when individuals
reproduce, their children have the same Universality and
Embodiment properties and (3) cognition - cognition repre-
sents the ability to have an embodiment as described by the
Embodiment property, that is to have cognitive skills to acquire
more information as the world becomes more complex.

In this work, we define biological intelligence as the ability
of individuals to access information directly or indirectly using
the concepts of useful and utility. Useful means anything that
leads to a greater organization of complex behaviors and utility
means anything that is profitable. Concretely, our solution
to biological intelligence proposes three new approaches to
optimization: (1) first approach converts row energy of indi-
viduals into useful work, (2) second approach improves upon
the previous approach by increasing the efficiency of energy
use (3) third approach uses the concept of utility to discover
the true nature of behaviors.
LocalSearch-ICE (LS-ICE) algorithm implements our

first approach to optimization. This algorithm explores the
local space by creating so called useful correlations - con-
nections created between consecutive behaviors that share
information and are sufficiently powerful to drive useful work.
We say that information is accessed indirectly because we
don’t care about the exact distance (or similarity) between
these behaviors. Although this algorithm is a good local
explorer, it is not sufficiently powerful to organize behaviors
because it only looks at the useful correlations produced by
the most profitable individuals.

Therefore, we propose a second LS algorithm called
AlternateLocalSearch-ICE (ALS-ICE) to implement
the second approach to optimization. This algorithm improves
LS-ICE by diversification of individuals selected for local
search - now both profitable and non-profitable individuals are
used to search for useful correlations. This algorithm leads to
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a better organization of behaviors into paths of behaviors of
different lengths and frequencies. Once we learn this orga-
nization, we use BestLocalSearch-ICE (BLS-ICE) to
implement the third approach to optimization. This algorithm
shifts from the concept of useful to the concept of utility
as follows: first it proposes that information is accessed in a
controlled manner, directly through high similarity measures
between two consecutive behaviors, then both profitable and
non-profitable individuals are used to search for profitable
correlations, gradually revealing the true nature of behaviors.

We combine the above LS algorithms with the EA algorithm
proposed in [10] and obtain three memetic algorithms (MA-LS,
MA-ALS and MA-BLS). Since designing MAs is usually
improvised, we discuss several important design issues: where
exactly should local search be applied, which individuals in
the population should be improved and how should they be
improved and how can global information can be integrated
with local search?

In Section II, we discuss related works that look into the
design of memetic algorithms. In Section III, we describe
the modeling of intelligent agents using ICE agent model,
introduce the notions of correlation, paths of behaviors and
useful/profitable correlations and present in detail three LS
algorithms: LS-ICE, ALS-ICE and BLS-ICE. In Section
IV, we present our experimental results with MAs MA-LS,
MA-ALS and MA-BLS in the game of Checkers.

II. RELATED WORK

The combination of evolutionary algorithms with local
search was named ”memetic algorithms” (MAs) [1]. These
methods are inspired by models of adaptation in natural sys-
tems that combine the evolutionary adaptation of a population
with individual learning within the lifetimes of its members.
From an optimization point of view, MAs have been shown to
be both more efficient and more effective because they require
fewer evaluations to find optimal higher quality solutions [2],
[3].

Despite the impressive results achieved by MAs, their
design is still improvised. Furthermore, the design of MAs
rises a number of important issues which must be addressed
by the practitioner. [6] proposes a syntactic model and a
taxonomy of MAs in order to clarify the main design issues
of MAs. Namely, the local search stage can happen before or
after an evolutionary operator such as mutation, reproduction
or selection. Local search can also be coordinated with these
operators - for example reproduction is applied to an individual
and the result of this operation is given as an argument to a
search function or individual is improved with a local search
function and then reproduction is applied to this result [4],
[5]. In a similar spirit, [17] proposes “crossover-aware” and
“mutation-aware” local searches.

According to [6], [8] and [7], local search can also be coor-
dinated with population management - for example organizing
the application of a local searcher to a particular subset of the
population. In this case we may have coarse-grain coordination
(provide population statistics to its local searcher) or fine-grain

coordination (just knows one individual at a time). In addition
to coordination with population management, it is possible to
incorporate historical information into the search mechanism -
for example we can use historical information when we want
to combine global and local information across time or update
the probabilities of applying genetic operators [9].

From the above syntactic modelings, a taxonomy of ar-
chitectural classes can be naturally derived based on index
number (i.e., a 4 bit binary number) D(A) = b0b1b2b4 which
can be assigned to any MA(A) to describe whether a type of
coordination is absent or present in A. In general, a lower D
algorithm should be preferred to one with a larger D.

In the following, we summarize some of the important
issues in the design of competent MAs [13]: (1) choice of
local search operators, (2) integration into EA cycle and (3)
managing the global-local search trade-off. Looking into MA
literature, we found that MAs usually use multiple local search
operators because they avoid spending time utilizing nonpro-
ductive operators. Most recent work tend to simply incorporate
one or more local search algorithms into an EA which can
lead to a rapid loss of diversity with clear implications on the
quality of the EA.

Finally, some works look into the integration of the local
search operators with the genetic operators (perform a partial
local search - only those solutions that are found promising
will be assigned for local search) and the issue of deep local
optima (to avoid getting trapped in a local optimum multiple
local searchers can be used simultaneously in the population).
In [16] and [17], the issue of large neutral plateaus and
deep local optima is addressed by providing modified local
searchers that can change their behavior accordingly to the
convergence state of the evolutionary search.

III. METHODOLOGY

A. ICE agent modeling

We describe an agent modeling WICE for a given world
W using the following elements: (a) a map M of physical
locations with dimensions and colors, (b) a set of entities E
that generate all the information RB that is ever used in W
and which is distributed across a set of consecutive frames F ,
(c) a set of agents A with their own behavior RC , local and
global graphs DS of interactions with the world and a set of
evolutionary mechanisms hEA associated to each population
in the world (Eq. 1).

WICE = (M{D,L,C}, E{RB , F}, A{RC , DS , hEA}) (1)

where,
• M represents the matrix of coordinates (x, y) of locations

in the physical world. Specification {D,L,C} describes
the world as a two-dimensional world D, with colored
locations L, according the a given color set C.

• E represents the set of all entities that move in the
world (e.g., game pieces, cars, artificial robot legs, etc.).
Specification {RB , F} describes each entity ei in E as
an object that uses a particular set of basic rules RBi
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from a larger set RB , rules which are executable in sev-
eral computational contexts (τi,1, RBi,1),. . . ,(τi,n, RBi,n)
within current frame (or environment) Fc ∈ F . We call
Uci an instance of frame Fc, that describes how rules in
RB have been applied in the physical world.

• A represents the set of all agents in world W . Specifi-
cation {RC , DS , hEA} describes each agent ai in A as
the owner of a set of complex rules RCi in RC that
represent his behavior, an interaction topology DSi

from
DS made of local and global computational contexts and
heuristic hEAi

from hEA addressing search and multi-
criteria decision making. In this work, we consider that
each hEAi is a DICE algorithm, i.e., an evolutionary
algorithm with Pareto-ranking first introduced in [10].

B. Agent optimization using LocalSearch-ICE Algorithm

The basic algorithmic structure we use for storing all rules
and correlations is an undirected weighted graph G = (V, E)
which stores in V all complex rules that are active in the
current frame Fc and in E all relations between any two
complex rules. A relation, therefore an edge e(vi, vj) exists
between two vertices vi and vj in V , if their correspond-
ing rules rci in vi and rcj in vj share information, i.e.,
I(rci) ∩ I(rcj) 6= ∅. We introduce the concept of correlation
which represents the amount of information shared by any two
vertices. Eq. 2 describes the concept of correlation using an
indicative conditional: for any two vertices vi and vj in graph
G, if there is an edge e(vi, vj) between these vertices, then a
correlation c(vi, vj) between vi and vj represents the amount
of information | I(rci) ∩ I(rcj) | shared by rules rci and rcj
in vi and vj .

(correlation)

∀vi, vj ∈ V, if e(vi, vj), then c(vi, vj) =| I(rci) ∩ I(rcj) | (2)

A path of behaviors represents an ordered set of behaviors,
therefore a path of correlations between consecutive vertices,
that starts from a single source v0, is finite and can contain
cycles. Eq. 3 describes the concept of path using the following
proposition: a path p is a sequence of vertices v0, v1, . . . , vm,
such that, there is a correlation c(vi, vi+1) between any two
consecutive vertices.

(path of behaviors)

p = v0, v1, . . . , vm, s.t.∀ vi, vi+1, i = 0,m− 1, ∃ c(vi, vi+1) (3)

where, c(vi, vi+1) is well defined according to Eq. 2.
So far, we have not assumed any connection of agents

with their reality. Next, we define useful correlations and
propose calculation of point estimate of the profit accumulated
by an agent (pep) using a random data sample taken from
previous universe U ′. Main advantage of using point estimates
is to increase the level of ‘realism’ that we include in our
evaluation of correlations. Eq. 4 formalizes the concept of
useful correlation using the following bi-conditional: for a
correlation created from vertex vi to vertex vj to be useful

in current universe U it is necessary and sufficient that the
profit fp(rcj) of rcj gets closer to the point estimate of the
profit pep calculated from U ′ by a small error ε.

(useful correlation)

c(vi, vj) is useful⇔ fp(rcj) ∈ [pep − ε, pep + ε] (4)

where, pep represents the point estimate of the profit calcu-
lated from universe U ′ that precedes current universe U .

The algorithm LocalSearch-ICE (or LS-ICE) for local
search is presented in Fig. 1. It implements a local search
mechanisms which receives as input the correlation matrix M
of all complex rules available in the current universe U and it
returns the set of all paths of behaviors Paths. The algorithm
starts with an initialization step to set the index of the current
path and the set Paths found so far to 0 and ∅ respectively,
and firstactive Boolean variable for the state of the first
element in a path to true (line 1). It processes a list of paths
that emerge in U until a transition to the next frame occurs,
it doesn’t exist any vertex vi that is active or a counter on the
maximum number of moves in a single universe is reached
(line 2). The search for a new path pl is initialized from a
random vertex vi in V containing a complex behavior rci that
is active (i.e., can be instantiated in the world) (lines 4, 5, 6).
A useful correlation is created from vi to vj as follows:
• First, the set of strategies (individuals) S is processed and

only 50% most profitable strategies that lead to useful
correlations are returned in SUseful (line 9);

• Second, a random vertex is chosen from a random strat-
egy in SUseful such that vj is active, i.e., behavior rcj
can be instantiated in the world (line 10);

• Third, vj is stored in the current pl and behavior rcj gets
instantiated in the world (lines 11, 12). The index of the
current vertex in M is changed from i to j (line 13) and
the algorithm loops to search the next node in pl until no
correlations can be created in pl (i.e. Boolean variable
active becomes false).

The algorithm returns the set of all paths Paths that emerge
from current universe.

C. Extensions of LS-ICE

LS-ICE algorithm limits access to information to only
individuals which are profitable and produce useful correla-
tions. In this section, we discuss two extensions of LS-ICE
called AlternateLocalSearch-ICE (ALS-ICE) and
BestLocalSearch-ICE (BLS-ICE) algorithms.
ALS-ICE algorithm is a modified LS-ICE which allows

optimization for all individuals. Concretely, it searches for the
most profitable strategies to create useful correlations, while
introducing genetic variation by searching also for the least
profitable strategies. Implementation wise, this algorithm only
adds a switch variable to alternate search among the 50%
most profitable and 50% least profitable strategies, so it does
not change the overall complexity of the algorithm.
BLS-ICE algorithm improves ALS-ICE by searching for

the most profitable strategies to create this time - profitable
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Algorithm LocalSearch-ICE(Matrix M) - local search with
adaptation to useful correlations
INPUT: M - correlation matrix of all complex rules.
OUTPUT: Paths - set of all paths {p1, . . . , pNP } that describe
agent behavior in the current universe U

1. Init: l = 0 (index of current path), Path = ∅ (empty set
of paths), i = 0 (index of the first element in a path) and
firstactive = true (Boolean variable for the state of the first
element in a path)
2. While ((transition(Fcurr, Fnext)! = true)
&& (firstactive == true) && (counter ≤ 10)) {
// process all paths of correlations in the current universe U
3. vi ← randomActive(S);
4. If (vi! = null) {
5. // process a single path of correlations
6. pl ← addtoList(vi, pl);
7. While (active == true) {
8. SUseful ← ProcessStrategies(S,M, vi);
9. vj ← randomActive(SUseful);
10. If (vj ! = null) {
11. pl ← addtoList(vj , pl);
12. instantiate(rcj);
13. i = j;

}
14. Else active = false;

}
15. Paths← addtoList(Paths, pl);

}
16. Else firstactive = false;
}

17. return Paths;

Fig. 1. LocalSearch-ICE algorithm with adaptation to useful correlations.

correlations - while introducing genetic variation by searching
also for the least profitable strategies. For both profitable
and non-profitable strategies, only neighboring vertices with
high similarity are considered for execution. High similarity
between rci and a neighboring vertex rcj is measured in Eq.
5 using an Euclidean distances measure drci,rcj < cmin.

(high similarity)

drci,rcj =| I(rci)− I(rcj) |≤ cmin, cmin ∈ N+ (5)

where, I(rci) and I(rcj) represent the sets of information that
make up complex behaviors rci and rcj .

The concept of profitable correlation is described in Eq. 6
as a correlation that produces a profit greater than the point
estimate of the profit pep calculated from the previous universe
U ′.

(profitable correlation)

c(vi, vj) is profitable⇔ fp(rcj) > pep (6)

where, pep represents the point estimate of the profit calculated
from previous universe U ′.

Finally, we argue that BLS-ICE implements ‘true optimiza-
tions’ because it unfolds information in a direct, controlled
manner such that only behaviors with high similarity are
executed, it allows only profitable correlations to occur and
it assumes diversity of created correlations. Therefore, this
optimization results in smooth transitions from one behavior
to another and the creation of more meaningful contexts which
can reveal the true nature of behaviors.

D. Memetic algorithms

In this section we discuss the design of MA-LS, MA-ALS
and MA-BLS algorithms:

1) Each local search algorithm - LS-ICE, ALS-ICE or
BLS-ICE - is applied before any mutation or reproduc-
tion operations in order to optimize the individuals in
a given population, that is to adapt them to the exist-
ing reality. We call this biological intelligence because
reality takes central stage.

2) Each local search algorithm explores different mecha-
nisms for accessing individuals, i.e., local search is ap-
plied selectively - only to the most profitable individuals,
or to both profitable and non-profitable individuals. At
dynamic time, in order to avoid complete local searches,
only 50% of the population is searched. This reduces the
performance time of the MAs.

3) Each local search algorithm controls the intensity of
the search differently: LS-ICE and ALS-ICE use only
useful correlations to search among the existent paths
of behaviors, while BLS-ICE uses only correlations
that are profitable. LS-ICE and ALS-ICE focus on
producing more useful work and therefore explain the
formation of organized paths of behaviors and BLS-ICE
focuses on the utility of these paths and therefore
explains the nature of behaviors.

4) Each local search algorithm combines local and global
information by using information about the point esti-
mates of the profit computed from previous population.
This approach increases the level of realism that we
include in our evaluation of correlations.

IV. EXPERIMENTAL EVALUATION

We start our experiments with the modeling of space in
Checkers according to the ICE agent model. All complex rules
in Checkers,
• Rule for moving forward left or right
rc1 = ((rb1 >> rb2)[k1,1])(k1,2), k1,2 = 1

• Rule for moving forward/backward left or right
rc2 = ((rb1 >> rb2 >> rb3 >> rb4)[k2,1])(k2,2),
k2,2 = 1

• Rule for capturing opponent pieces forward left or right
rc3 = ((rb5 >> rb6)[k3,1])(k3,2), k3,2 ∈ [1, 2]

• Rule for capturing opponent pieces forward/backward left
or right
rc4 = ((rb5 >> rb6 >> rb7 >> rb8)[k4,1])(k4,2),
k4,2 ∈ [1, 2]
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• Rule for blocking opponent pieces
rc5 = ((rb9 >> · · · >> rb34)[k5,1])(k5,2), k5,2 = 1

are grouped into two frames F1 and F2 (rc1 and rc3 are active
rules in F1, while rc1, rc2, rc3, rc4 and rc5 are active rules
in F2) and for simplicity all depth parameters are zero (i.e.,
k1,1 = k2,1 = k3,1 = k4,1 = k5,1 = 0). These two frames have
been set up with the following objectives: F1 has one goal -
g1 to move pieces, capture opponent pieces and transform one
piece into a king, F2 has two goals - g1 from F1 and g2 to
block all opponent pieces.

We explain the concepts of correlation, path of behaviors,
useful and profitable correlation in the context of Checkers
game as follows: a) if an agent executes a rule rci followed
by another rule rcj in two consecutive moves and their
instances share some information, then we obtain a correlation
between rci and rcj ; b) if an agent executes a set of rules
rc0, rc1, . . . , rcm in m + 1 consecutive moves and there is
a correlation between any two consecutive instances, then
we obtain a path of behaviors; and c) useful and profitable
correlations add some conditions on the correlations related
to their usefulness or profitability.

The implementation is done in Java, using an 8×8 checker-
board with 12 pieces per side. Experimentally, we will test the
memetic algorithms on two agents that play Checkers against
each other ((a) Game 1: agent A plays Checkers against agent
B, both using MA-LS, (b) Game 2: agent A plays Checkers
against agent B, both using MA-ALS and (c) Game 3: agent
A plays Checkers against agent B, both using MA-BLS) and
analyze two of their most frequent behaviors, rc1 and rc3
respectively. Namely, we split our experiments in two parts
- the first part is concerned with learned paths of behaviors
in F1 and the second part is concerned with learned paths of
behaviors in F2 and how they compare with those from F1.

A. Evaluation of frame F1

In this section we discuss the experimental results obtained
from Games 1,2 and 3 in frame F1. Figure 2 depicts the results
of experiments for behaviors rc1 and rc3, however similar
discussion holds for the other behaviors as well.

First, we run Game 1 and learn that there is no clear
organization of paths of behaviors by their frequency although
LS-ICE does some useful work using only profitable indi-
viduals. For instance, for behavior rc1 (blue line in Fig. 2(a)),
small and big paths of correlations have mixed frequencies
(between 0 and 8) with one exception - paths of length 10
which have a high frequency (14). Behavior rc3 has only two
lengths for paths of correlations (1 and 2 since 3 produced no
instances) which are clearly very different in their frequencies
(blue line in Fig. 2(b)), therefore we can conclude that Game
1 produced a good organization of paths of behaviors for rc3
based on their frequencies.

Next, we want to increase the amount of useful work by
running Game 2 in order to produce a better organization of
paths of behaviors for rc1. From experimental results (red line
in Fig. 2(a)) we clearly see that Game 2 successfully organizes

paths of correlations in different classes of frequencies based
on path lengths. We distinguish between several sub-systems:
• sub-system 1 - paths with lengths 1 and 2 have frequen-

cies in the interval [2, 4];
• sub-system 2 - paths with lengths between 3 and 5 have

frequencies in the interval [6, 7];
• sub-system 3 - paths with lengths between 6 and 8 have

frequencies in the interval [2, 3];
• sub-system 4 - paths with lengths 10 have frequencies in

the interval [13,13].
Since sub-systems 2 and 4 are the most active, they dictate

the flow of energy through the complex system and drive the
processes of self-organization and the emergence of other sub-
systems (like sub-systems 1 and 3).

The final step in our experiment is to run Game 3 and
learn what is the exact nature of rc1 and rc3 in the above
sub-systems, i.e., learn what are the frequencies of paths
of behaviors in different sub-systems when more realistic
conditions are set in (i.e., using profitable correlations only).
For a given sub-system, the nature of behavior is described by
its most frequent paths of behaviors where the agent spends
most of its time.

From Game 3 (green line in Fig. 2(a)) we learn that:
• in sub-system 1 the true nature of rc1 is described by the

most frequent paths - with lengths 1 and 2;
• in sub-system 2 the true nature of rc1 is described by the

most frequent paths - with lengths 3 and 5;
• in sub-system 3 the true nature of rc1 is described by the

most frequent paths - with length 6;
• in sub-system 4 the true nature of rc1 is described by the

most frequent paths - with length 10.

Fig. 2. Number of paths of correlations in frame F1 for Games 1,2 and
3 using LS-ICE, ALS-ICE and BLS-ICE local search algorithms: Fig
2(a) - frequency of useful/profitable paths of correlations of different lengths
for behavior rc1, and Fig 2(b) - frequency of useful/profitable paths of
correlations of different lengths for behavior rc3.

B. Evaluation of frame F2

In the previous section we have seen how the true nature of
agents behavior can be incrementally revealed by producing
more useful work and shifting from the concept of useful to
that of utility. In this section, we would like to compare the
results obtained from both F1 and F2.

First, we notice a change in dynamics. In Game 1 (blue line
in Fig 3.(a)), for instance, F2 produces an overall growth in
the number of paths of correlations for almost all path lengths.
When more useful work is introduced in the system through
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Game 2, the system is again organized in sub-systems (red
line in Fig 3.(a)):
• sub-system 1 - paths with lengths 1,2 and 3 have frequen-

cies in the interval [9, 10];
• sub-system 2 - paths with lengths 4,5,6,7 and 8 have

frequencies in the interval [1, 5];
• sub-system 3 - paths with lengths 9 and 10 have frequen-

cies in the interval [9, 10].
Since now sub-systems 1 and 3 are the most active, they

dictate the process of self-organization and the emergence of
other sub-systems (like sub-system 2).

When comparing F1 with F2 in Game 2, we notice that sub-
system 1 (now incorporating parts of previous sub-systems 1
and 2) becomes very active surpassing sub-system 2.

The final step is to run Game 3 (green line in Fig. 3(a)) and
observe the true nature of behaviors:
• in sub-system 1 the true nature of rc1 is described by the

most frequent paths - with length 3;
• in sub-system 2 the true nature of rc1 is described by the

most frequent paths - with lengths 4, 6;
• in sub-system 3 the true nature of rc1 is described by the

most frequent paths - with length 10.
In conclusion, this result shows that rc1 has changed its

nature from frame F1, now becoming more complex - allowing
only for larger paths lengths to occur, while rc3 has become
simpler in F2.

Fig. 3. Number of paths of correlations in frame F2 for Games 1, 2 and
3 using LS-ICE, ALS-ICE and BLS-ICE local search algorithms: Fig
3(a) - frequency of useful/profitable paths of correlations of different lengths
for behavior rc1, and Fig 3(b) - frequency of useful/profitable paths of
correlations of different lengths for behavior rc3

V. CONCLUSION

In this work we proposed three memetic algorithms that use
novel LS algorithms to improve the solution of multi-objective
optimization problems and define biological intelligence. First,
we introduce the concepts of useful and utility and show
how to implement them in LS algorithms. Then, we discuss
several important design issues of memetic algorithms. Our
experiments explain the complexity of behaviors in Checkers
and how to reveal their true nature.

We conclude that MA-ALS algorithm is a good method to
learn the organization of behaviors into paths of behaviors
and MA-BLS algorithm is a good method to understand the
nature of these behaviors. In the future, we plan to use these
memetic algorithms in more realistic environments in order to
learn about the nature of more complex behaviors (i.e., like
human behaviors).
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